Menu
×
   ❮     
HTML CSS JAVASCRIPT SQL PYTHON JAVA PHP HOW TO W3.CSS C C++ C# BOOTSTRAP REACT MYSQL JQUERY EXCEL XML DJANGO NUMPY PANDAS NODEJS R TYPESCRIPT ANGULAR GIT POSTGRESQL MONGODB ASP AI GO KOTLIN SASS VUE DSA GEN AI SCIPY AWS CYBERSECURITY DATA SCIENCE
     ❯   

Random Data Distribution


What is Data Distribution?

Data Distribution is a list of all possible values, and how often each value occurs.

Such lists are important when working with statistics and data science.

The random module offer methods that returns randomly generated data distributions.


Random Distribution

A random distribution is a set of random numbers that follow a certain probability density function.

Probability Density Function: A function that describes a continuous probability. i.e. probability of all values in an array.

We can generate random numbers based on defined probabilities using the choice() method of the random module.

The choice() method allows us to specify the probability for each value.

The probability is set by a number between 0 and 1, where 0 means that the value will never occur and 1 means that the value will always occur.

Example

Generate a 1-D array containing 100 values, where each value has to be 3, 5, 7 or 9.

The probability for the value to be 3 is set to be 0.1

The probability for the value to be 5 is set to be 0.3

The probability for the value to be 7 is set to be 0.6

The probability for the value to be 9 is set to be 0

from numpy import random

x = random.choice([3, 5, 7, 9], p=[0.1, 0.3, 0.6, 0.0], size=(100))

print(x)
Try it Yourself »

The sum of all probability numbers should be 1.

Even if you run the example above 100 times, the value 9 will never occur.

You can return arrays of any shape and size by specifying the shape in the size parameter.

Example

Same example as above, but return a 2-D array with 3 rows, each containing 5 values.

from numpy import random

x = random.choice([3, 5, 7, 9], p=[0.1, 0.3, 0.6, 0.0], size=(3, 5))

print(x)
Try it Yourself »


×

Contact Sales

If you want to use W3Schools services as an educational institution, team or enterprise, send us an e-mail:
[email protected]

Report Error

If you want to report an error, or if you want to make a suggestion, send us an e-mail:
[email protected]

W3Schools is optimized for learning and training. Examples might be simplified to improve reading and learning. Tutorials, references, and examples are constantly reviewed to avoid errors, but we cannot warrant full correctness of all content. While using W3Schools, you agree to have read and accepted our terms of use, cookie and privacy policy.

Copyright 1999-2024 by Refsnes Data. All Rights Reserved. W3Schools is Powered by W3.CSS.